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Abstract
This paper intends to study and implement recent state observation techniques of the ultra-local model used in model-free
control approach in two different methodologies, through an ultra-local model-based algebraic estimator and using an ultra-
local model-based derivative estimator. The estimation is based on Taylor’s expansion coefficients for an arbitrary order.
This research serves a discrete implementation details of the proposed approach using operational calculus and finite impulse
response filters. A comparative study between algebraic and derivative estimators is presented. Different tests have been
verified on a position trajectory control scheme of a DC motor that is subjected to disturbances and uncertainties. The used
ultra-local model design is independent of initial conditions and stands in need only to measure the system’s input and output
values. This study shows that the proposed design reduces the nonlinearities and increases the robustness to disturbances
resulting from Coulomb friction effects. Moreover, the algebraic and derivative estimation process is computed in real-time.
The evidence of the recommended approaches has been examined by numerical simulation and comparedwith other strategies.

Keywords Algebraic estimator · Derivative estimator · Model-free control · Disturbance rejection · DC motors · Intelligent
PID

1 Introduction

DC motors have been commonly used in industries along
with their impressive speed control characteristics, even
though their operating costs are higher than the induction
motor (Lyshevski 1999). Consequently, the DCmotor’s posi-
tion control has acquired substantial studies where many
techniques have been developed. Its key benefit is that speed
or positioning control is easily adaptable for an extensive
range to track a default time trajectory in response to var-
ious load inputs. In the past, numerous researches have
been conducted, and literature covers many applications:
motion control of a disk (Yavin 2007), overhead cranes con-
trol (Mahfouf et al. 2000), liquid pumps (Mummadi 2000),
wheeled mobile manipulator (Tang et al. 2010), positioning
tables (Wang et al. 2011). In that cases, Coulomb frictions
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and unmodeled dynamics have to be considered. Recently,
researchers have shown an increased interest in studying
appropriate control techniques that utilize high-precision
and high-speed tracking functionality of DC motors. Time
response is typically essential for high efficiency, and pre-
cision/exactness becomes increasingly stringent as modern
electromechanical applications have a reduced size. High
speed is generally necessary to obtain an increased produc-
tivity, and accuracy is increasingly stringent due to the small
size of current electromechanical systems (Ruderman et al.
2020). Eker (2004) integrated the usual discrete time algo-
rithms with root mean square errors to identify and control
the mechanical systems. Nouri et al. (2008) examined the
issue of speed regulation through recurring neural networks
and introduced a slidingmode control with a PID type sliding
surface (Eker 2006).Mamani et al. (2007, 2009) conducted a
classical control technique using the system model which is
known frequently, and used an adaptive control approach to
improve the control performance. An other adaptive control
approach was designed using bacterial foraging algorithm
(Bhushan and Singh 2011). Guermouche et al. (2015) con-
trolled the DC motor position via disturbance observer. A
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study by Aravind et al. (2017) examined an optimization
technique with LQG controller.

Preliminary work on algebraic techniques for rapid online
and accurate identification or estimation of system param-
eters, failures, states, and input perturbations have been
established in recent years in the studies of Fliess and Sira-
Ramírez. The principles of the technique for linear systems
case study was reported by Fliess and Sira-Ramirez (2003)
where one of the parameter identifiers for the model of the
DC motor has been outlined by Mamani et al. (2007). Fliess
and Join (2013) introduced the model-free control approach
(MFC) which expands the classical PID controllers and sets
“intelligent” PID controllers (iPID) that contribute to the sys-
tem’s unknown dynamics and can be used to enhance the
reference tracking. Since MFC does not require a nominal
model, the control methodology is implicitly robust. Much
successful research is being processed using MFC: vehi-
cles system control (Polack et al. 2019), magnetic levitation
systems (Moraes and da Silva 2015), quadrotor helicopters
(Glida et al. 2020), fuel power generation (Mungporn et al.
2019), hybrid unmanned aerial vehicles (Barth et al. 2019),
exoskeleton-upper limb system (Bembli et al. 2021), and
other applications.

In this paper, model-free control technique is proposed
based on an ultra-local combined with simultaneous imple-
mentation of algebraic and derivative estimators. In previous
studies, the estimation techniques were based on ALIEN fil-
ters (Fliess and Join 2013), and this work relies on FIR filters.
Moreover, a clear and quick tuning algorithm of the ultra-
local model parameter is proposed.

It is important to note that the used DC motor in this
research is subjected to Coulomb friction effects and have
un-modeled dynamics. Therefore, this study contributes to
existing knowledge of DC motors position control that are
subjected to internal and external disturbances. In a first point
of view, nonlinear controllers have more attractive features
than linear controllers in terms of the tracking error to bemin-
imized alongwith the trajectory tracking; simultaneously, the
proposed algebraic/derivative approaches can ensure better
control law with a quick, non-asymptotic, and accurate state
estimation. Besides showing the closed-loop control estima-
tors’ efficiency, the research also offers important insights
and simplifies several aspects of a detailed digital implemen-
tation of these modern controllers.

This paper has been divided into the following sections:
Sect. 2 illustrates the DC motor’s dynamic model and the
problem formulation. Section 3 gives a brief overview of the
ultra-local model and model-free control, the used estima-
tion techniques and their implementations, and the controller
design procedure. In Sect. 4, the findings of the research are
presented. Finally, the conclusion gives a brief summary and
critique of the findings.

Table 1 Parameters of the DC
motor

Variable Value

k (N· m / V) 0.21

J (kg· m2) 6.87×10−5

v (N· m· s) 1.041×10−3

n 50

2 DCMotor Model and Problem Formulation

2.1 DCMotor Dynamics

The context of the used linear model for the DC motor is
covered in this section. This linear model is considered to be
affected by an uncertain disturbance input and Coulomb fric-
tion effects (Olsson et al. 1998). The basic dynamic equation
of the system is derived from Newton’s second law:

kV = J ¨̂
θm + v

˙̂
θm + Γ̂c(

˙̂
θm) (1)

where V is the DC motor input voltage fed to the system as
a control variable signal, the magnitude of J is the motor’s
gear inertia (kg · m2), v is the coefficient of viscous friction
(N· m· s), k is the electromechanical constant (N · m / V),
and Γ̂c is the torque of the unknown friction that impacts the
motor dynamics. The nonlinear term of the friction is viewed
as a disturbance and describes the following equation:

Γ̂c = Γ̂Coulsign(
˙̂
θm) (2)

where Γ̂Coul is the static friction value that must surpass
the rotational velocity in order to start rotating around the

vertical axis. The terms ¨̂
θm ,

˙̂
θm and ˙̂

θm are used to refer to
the angular acceleration (rad/s2), angular velocity (rad/s) and
angular position (rad) of themotor, respectively. The constant
parameter n is the motor gear reduction factor. Hence, θm =
θ̂m /n, where θm is the motor’s gear position and θ̂m is the
motor shaft’s position. Furthermore, Γc = Γ̂c/n, where Γc is
the motor gear’s Coulomb friction torque.

The type of the used DC motor in simulations is: RH-8D-
6006-E036AL-SP(N) (Mamani et al. 2009), where the shaft
may turn across the vertical axis, either left or right. See the
description of the parameters in Table 1.

2.2 Problem Formulation

Consider the DC motor dynamics discussed above in (1).
Provided that the reference path θ∗

m(t) is properly smooth
for the trajectory tracking of the DC motor, and considering
so-called signal input noises, V , and of the output, θm(t), in
addition to the existence of unknown nonlinear effects result-
ing frommodel parametric uncertainties or Coulomb friction
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effects, the feedback controller must accomplish precisely
the asymptotic tracking of θ∗

m(t) through the system output
θm(t).

3 Model-free Control Approach

3.1 General Principle

Consider a system in which the output is y, and the input
is u. If S is not necessarily linear but an essentially smooth
function, the differentiation equation between the input and
output can be represented as in (3) (Mboup et al. 2007):

S
(
t, u, u̇, . . . , u(m), y, ẏ, . . . , y(n)

)
= 0 (3)

If there exist i ∈]0; n [ such that ∂S
∂ y(i) �= 0, then the abso-

lute function theorem returns locally to:

y(i) = S
(
t, u, u̇, ..., u(m), y, ẏ, ..., y(i−1), y(i+1), ..., y(n)

)

(4)

3.2 Ultra-local Model

The theory of model-free control technique developed by
Fliess and Join (2013) is to substitute an ultra-local model
given by the complex nonlinear model in (4) such that:

y(v)(t) = F(t) + βu(t) (5)

where

– y(ν) is the ν-order derivative of the observed output. ν is
a positive integer picked by practice and may be chosen
to be 1, or rarely 2. It is selected to be equal to 1 in the
rest of this research for better transient performance.

– F represents the un-modeled dynamics of the plant,
including the unexpected disturbances. This piece-wise
constant function is continuously updated and identi-
fied in real-time via algebraic approaches (Fliess and
Sira-Ramirez 2003). The determination of F through
derivative estimation is another possible estimation tech-
nique (Mboup et al. 2007).

– β ∈ R is a non-physical parameter selected by the
designer such that βu and y(ν) are of the same sign and
magnitude. By testing, until a perfect closed-loop perfor-
mance is acquired, this choice is obtained.

In a short time interval, the ultra-local model is seen as
an approximate dynamic. This model is used for the control

synthesis. It allows the nonlinear mathematical system mod-
eling to be omitted from the complex task and contributes to
precise gain tuning.

Consider the ultra-localmodel in (5) oncemore, then clos-
ing the loop through an intelligent PID controller:

F(t) = y(v)(t) − βu(t) (6)

The control signal can be represented as follows:

u = − F − y(v)
d + uC
β

(7)

where

– y(v)
d is the vth derivative of the output reference trajectory.

– uc is a causal feedback control signal.

Combining (6) and (7) yields:

y(v) = F + β

(
− F − y(v)

d + uc
β

)
= y(v)

d − uc (8)

Afterward,

y(v) − y(v)
d + uc = 0 (9)

e(v) + uc = 0 (10)

where e(v) is the vth derivative error of (e = y − yd). uc
should be chosen to ensure a perfect asymptotic tacking
where the output converges to the reference trajectory, i.e.,

lim
t→+∞ e(t) = 0 (11)

3.3 Intelligent PIDs (iPIDs)

Set the control signal in (7) with a classic PID controller,

u = − F − ÿd + KPe + KI
∫
e + KDė

β
(12)

where v = 2 in (5). The intelligent proportional-integral-
derivative controller (iPID) can be defined by substituting
(5) in (12), that being so:

ë + KPe + KI

∫
e + KDė = 0 (13)

where F no longer shows up, i.e., the uncertainties and un-
modeled plant dynamics are excluded. Equation (13) then
readily fulfills the tracking requirements by means of a suit-
able tuning of the gains {KP , KI , KD}. It results in a linear
differential equation stability with real constant coefficients.
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If {KP �= 0, KI = 0, KD = 0}, {KP �= 0, KI = 0,
KD �= 0}, {KP �= 0, KI �= 0, KD �= 0}, we obtain an intel-
ligent Proportional (iP), intelligent Proportional-Derivative
(iPD) and intelligent Proportional-Integral-Derivative (iPID)
controllers respectively.

4 Online Estimation of the Ultra-local Model

The identification of the parameter F may be found using
algebraic estimation (Fliess et al. 2008). The other proposed
technique is the numerical differentiation known as a deriva-
tive estimation.

4.1 Identification Through Algebraic Estimation
(Alg)

Consider equation (5). The classic principles of operational
calculus are used in order to cover all preceding equations,
where F is substituted by Fapprox and presumed to remain
constant over the interval [t, t + T ] and obtained by the fol-
lowing steps:

1. For v = 1 in (5), take the Laplace transformation:

sY (s) − y(0) = Fapprox
s

+ βU(s) (14)

2. Differentiate (14) with respect to s to eliminate the initial
condition y(0):

Y (s) − s
d

ds
Y (s) = −s−2Fapprox + β

d

ds
U(s) (15)

3. Multiply both sides of (15) by 1
s2

(every component will
be integrated at least once) to eliminate and filter the time
derivatives to have a low-pass filter that attenuates noises:

1

s2
Y (s) + 1

s

d

ds
Y (s) = − 1

s−4 Fapprox + β
1

s3
d

ds
U (s)

(16)

4. Note that the differentiation of Y (s) with respect to s is
associated with the multiplication by −t in time domain,
and the left multiplication of Y (s) by 1

sα , α ≥ 1 aligns
with recursive integrals. In order to have a closed-form
expression, the Cauchy formula for recurring integration
is used for the operator 1

sα
dn
dsn in just one integral:

1

sα

dn

dsn
Y (s) ←→ (−1)n

(α − 1)!
∫ t

0
(t − τ)α−1τ n y(τ )dτ

(17)

5. The corresponding estimated time domain expression of
(16) will be:

Fapprox = −6

t3

∫ t

0
(t−2τ)y(τ )dτ − 6β

t3

∫ t

0
τ(t−τ)u(τ )dτ

(18)

4.2 Identification Through Derivative Estimation
(Der)

The second approach for estimating the parameter F in (5) is
the identification through derivative estimation of the output
signal ẏ in (6).

The derivative estimation approach is identified based on
the coefficients of Taylor expansion in an arbitrary order. The
signal ỹ(t) may be seen as an analytic function and can be
approximated through a simplified Taylor expansion deter-
mined at (t = 0):

ỹ(t) 	 y(t) =
n∑
j=0

y( j)(0)

j ! t j (19)

This identifying technique includesmanyalgebraicmanip-
ulations of the functional domain with the same principles as
Laplace transformation. The underlying expression is even-
tually translated into time domain and can be found in the
following steps:

1. Define the noisy signal’s first-order approximation ỹ(t)
around t = 0 :

y(t) = a0 + a1t (20)

2. Applying the Laplace transformation known rules and
Cauchy formula, after some mathematical rearrange-
ment:

Y (s)

s2
+ 1

s

d

ds
Y (s) = −a1

s4
(21)

3. The resulted time domain first-order derivative estima-
tion is the following:

ẏ = a1 = − 6

t3

∫ t

0
(t − 2τ)y(τ )dτ (22)

4. The unknown function Fapprox can be identified then by
the derivative estimator (Der ) in real-time using (23):

Fapprox = ẏ−βu(t) = − 6

t3

∫ t

0
((t −2τ)y(τ )−βu(t))dτ

(23)
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Fig. 1 MFC scheme

5 Discrete Implementation of the Ultra-local
Model

The above expressions (18) and (23) of the estimated param-
eter F will be digitally implemented using an FIR filter. For
other implementations using ALIEN filters, see (Fliess and
Sira-Ramirez 2003).

5.1 Discrete Implementation of the Derivative
Estimator (Der)

Consider again the noisy signal ỹ(t) described in (19), the
approximation is relevant for ε at a short interval and can be
represented as follows:

ẏ 	 ẏ(0) = a1 = k

q(t)

∫ t

0
Q̃(t, τ )y(τ )dτ ; 0 < t < ε (24)

and implemented in a short time with a fixed-length win-
dow T :

ẏ = k

q(T )

∫ T

0
Q̃(T , τ )y(τ )dτ =

∫ T

0

k Q̃(T , τ )

q(T )
y(τ )dτ

=
∫ T

0
Q(T , τ )y(τ )dτ

(25)

The description above presents an estimation of the func-
tional ẏ = a1 that exists only in the neighborhood of t = 0, as
this approximation is based on the expansion of Taylor series
around t = 0. Typically, the approximation is appropriate if
the signal is a polynomialwithout noise. The evaluation drifts
over time for an arbitrary signal. The reason for this is basi-
cally a1 = ẏ(0) should be equivalent to a1 = ẏ(t) in order to

approximate the derivative at t = 0 in a short time 0 < t < ε.
Conversely, the estimator is not causal: y(t) for t > 0 then,
it allows the signal values to be estimated at t = 0. This
inspires the modification of the system to create at time t
a causal estimator where the coefficients can be determined
through the estimators introduced by the following steps:

1. Assume the Taylor expansion x(τ ) near τ = 0 of the
signal x̃(τ ) :

x̃(τ ) 	 x(τ ) =
n∑
j=0

a1τ ⇒ a1 =
∫ T

0
Q(T , τ )x(τ )dτ

(26)

2. By changing the variables τ � t−θ and y(θ) � x(t−θ):

y(θ) � x(t − θ) =
n∑
j=0

a1(t − θ) (27)

This expression can be considered as a Taylor expansion
x̃(τ ) for θ = t with a reversal signal for the parameter θ :

ẏ(t) = d

dθ
(x(t − θ))

∣∣∣∣
θ=t

= (−1)a1 (28)

3. Again by changing the variable a1:

a1 =
∫ T

0
Q(T , τ )x(τ )dτ =

∫ T

0
Q(T , τ )y(t − τ)dτ

(29)
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A causal estimator is determined using a specified esti-
mation window of length T at time t :

ẏ(t) = a1 = (−1)
∫ T

0
Q(T , τ )y(t − τ)dτ (30)

A digital FIR Filter is feasible to implement the above
estimator through a trapezoidal integration procedure. In this
context, we consider T = TsN , where T is the estimation
window, Ts is the fixed sampling time, and (N + 1) is the
number of samples:

ẏ(t) = a1 	 (−1)
N+1∑
k=1

αk Q (T , τk) y (t − τk) (31)

The discretion of Q (T , τk) is theoretically estimated to
reduce the computational cost, where we also consider the
coefficients (αk) obtained from the integration of trapezoids:

Q̂αk (T , τk) =[
α1Q (T , τ1) α2Q (T , τ2) ...αN+1Q (T , τN+1)

]

τk = (k − 1)Ts

αk = Ts
2

, k = 1 or k = N + 1

αk = Ts, k = 2, 3, . . . , N (32)

The buffer array ŷ (t − τk) that includes the last samples
of (N + 1) is ordered vertically, and the whole vector is relo-
cated for each sample clock.Thevery last value is discounted,
and the newest value of y(t) is pushed to the first place:

ŷ (t − τk) =

⎡
⎢⎢⎢⎣

y(t)
y (t − Ts)

...

y (t − TsN )

⎤
⎥⎥⎥⎦ (33)

Eventually, for each sample time, Q̂αk (T , τk) and ŷ (t − τk)

are multiplied, ensuring an online update estimation of ẏ :

ẏ(t) = a1(t) 	 (−1)
N+1∑
k=1

αk Q (T , τk) y (t − τk)

= (−1)Q̂αk (T , τk) ŷ (t − τk)

(34)

It is necessary to note that a distinction between noise and
accuracy is defined by the estimating window T . Although
smaller values of T have a quick filter response and better
contextual signal modeling, larger values increase noise sen-
sitivity with higher frequency filtering characteristics. Given
that the filter coefficients may be high (particularly for high
order estimators), the window should be large enough to

minimize the inherent numerical error to the discrete expres-
sion in (31). The sampling frequency may also be increased
ordinarily if the hardware operates at the highest level of
numerical accuracy.

Given that today, the computational effort is not con-
strained because we now have access to quick and low-cost
micro-controllers. These filters are being effectively imple-
mented simultaneously. However, the complexity of compu-
tation gradually increases with the number of samples, as
(N + 1) multiplication and (N ) sums are necessary to make
the approximation at each time step.

Finally, after the estimation of ẏ and back to equation (23)
using the last control input to measure the actual parameter,
F can be determined using the following equation:

F̂k = ẏk − βuk−1 (35)

5.2 Discrete Implementation of the Algebraic
Estimator (Alg)

Consider again the estimation expression of the parameter F
presented in (18). An FIR filter is suitable for digital imple-
mentation. The previous approach has been revised, and we
incorporate the restricted fixed-length window T backward
to achieve a feasible online implementation relative to the
estimator described in Sect. 5.1. In this case, F is calculated
as an independent time constant, so it does not modify that
signal in the reverse integration. After some change of vari-
ables, equation (36) is the final expression for the algebraic
estimator of F(Alg).

After certain variables have changed, F represented in
(18) is finally the following:

F = −6

T 3

∫ T

0
(t−2τ)y(t−τ)dτ−6β

T 3

∫ T

0
τ(T−τ)u(t−τ)dτ

(36)

An appropriate selection of any variable means that the
computed discrete filter parameters are stored in a vector
(considering trapezoidal integration coefficients). For the
estimation of the current control input in (12), the previous
value of the control input is used to prevent an algebraic loop.
Thus, the identification of F is constant, and no further prob-
lem in this method even though the approximation is taken
in a small sliding window T .

6 Controller Design

The present section describes the used feedback control
method for the resolution of the position tracking of the DC
motor. The execution of model-free control laws is signif-
icantly affected by the parameters β and iPD/iPID gains.
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Fig. 2 Sinusoidal trajectory—Position tracking of the DC motor in the presence of Coulombs friction effects using ultra-local model based on
algebraic and derivative estimators

Therefore, for better performance, a tuning procedure is pre-
sented in Sects. 6.1 and 6.2, respectively.

6.1 Tuning Procedure of the iPD/iPID Gains

An iPD and iPID controllers are used in the coming simula-
tions, suppose again v = 1 in (6):

F(t) = ẏ(t) − βu(t) (37)

As in Fig. 1, the loop is closed with an intelligent
Proportional-Integral-Derivative (iPID) controller:

u = −F + yd − KI
∫
e − KPe − KDė

β
(38)

where yd is the reference trajectory, e = yd−y is the tracking
error, and {KP , KI , KD} are the frequent PID tuning gains.

For an iPD controller, selecting KP = λ2, KI = 0, and
KD = 2λ, λ ∈ R

+ provides a stable closed loop of two real
negative poles equivalent to−λ (Laid and Boubekeur 2020):

ë + λ2e + 2λė = 0 (39)

For an iPID controller, selecting KP = 3λ2, KI = λ3, and
KD = 3λ, λ ∈ R

+ provides a stable closed loop loop of three
real negative poles equivalent to −λ (Laid and Boubekeur
2020):

ë + λ3
∫

e + 3λ2e + 3λė = 0 (40)

6.2 Tunning Procedure ofˇ

Consider the current output signal dynamics described in (6)
in the following form:

ẏ = F̃(t) + β̃(t)u (41)

where F̃(t) and β̃(t) refer to two unspecified time func-
tions, this is now:

F = F̃(t) + (β̃(t) − β)u (42)

u = −
(
F̂ − ẏd

β

)
− Q(e) (43)

where Q(e) represents the tracking error correction.
By integrating (41) in (43) and choosingQ(e) to be equal

to 0, i.e., taking account of just feed-forward expression of
the control law, that refers to:

ẏ = β̃(t)

β
ẏd +

(
F̃(t) − β̃(t)

β
F̂

)
(44)

Themeasurement of F̂ is sensitive to particular dynamics,
as the controller’s performance is essentially determined by
the estimation error |F̂ − F |. Thus, the value of β must be
specially picked as similar to the actual system gain to avoid
significant changes of F .

For β → +∞, the control signal u demonstrated in (43)
is referred to Q(e). In that case, the controller is simplified
to a classic PID controller.

For β → 0+, the control signal u becomes mainly based
on the estimation F̂ . Thus, β is easily tuned just by setting
Q(e) = 0 and observing various values of β. First choose
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Fig. 3 Tuning protocol of the parameter β

β high enough, the control signal is approximately zero.
Second, reducing the value of β will rise the control signal
average until the reference closed-loop condition is satisfied
(ẏ = ẏd ). Figure 3 summarizes the tuning procedure of β.

7 Simulations Results

Numerical simulations were conducted to confirm the effi-
ciency of the implemented control law with regard to fast
convergence of the tracking error into a limited region of
zero, low control effort and smooth transient responses for
an inaccurate expertise input perturbation of the effect caused
by Coulomb friction or noisy measurements that affect the
system.

The controller gains are chosen by placing the closed-
loop poles in a proper position on the real negative axis. In
this study, the poles have been placed at p = −100 rad/s,
and the values of the PD and PID gains {KP , KI , KD} were
determined by the expressions described in (39) and (40).

Fig. 4 Sinusoidal trajectory—Derivative estimation of the angular

velocity ˆ̇y = ( ˆ̇θm(t))

The efficiency of the model-free control approach imple-
mented using the ultra-local model based on algebraic/
derivative estimators is shown by two distinct trajectories:

1. A sinusoidal position tracking such that, θ∗
m = A sin(ωt)

+ B with an amplitude A = π/12 (rad), a bias B = π/36
(rad) and a frequency ω = 1 (rad/s).

2. A nominal trajectory defined through an eight order
Bezier’s polynomial, which interpolates smoothly from
0 to 1 at the interval of time

[
ti , t f

]
.

θ∗
m(t) = θ∗

m(ti ) + (θ∗
m(t f ) − θ∗

m(ti ))ϕ
(
τ, t f , ti

)
(45)

where τ = (t − ti ) /
(
t f − ti

)
.

The study was carried out with a sampling frequency
of 10kHz. In both approaches of algebraic and derivative
estimation of F in (35) and (36), an estimation window of
T = 0.2s, a fixed sampling time of Ts=0.0001s, and a num-
ber of samples N = 2000 were used.

In the following simulations, “Der” denotes the estima-
tion of the parameter F in (5) through angular velocity, “Alg”
denotes the algebraic estimation of F in (36), and the mea-
sured output {y}, the reference input {yd}, the control signal
{u} will be used to refer to: {θm(t)}, {θ∗

m(t)}, {V }, respec-
tively. The first-order derivative of the output ẏ used in (23) is
estimated through a derivative estimator and comparedwith a
theoretical derivator (see Fig. 4). For each estimationmethod,
different values of β were set to provide a good response as
described in Fig. 3. The tuning procedure proposed in Sect.
6.2 was used to apply the ultra-local model-based estimators
control law. It simply takes a few minutes to fine-tune the
controller. To proceed, the proportional gain KP is consid-
ered to be zero. Then, a reference trajectory is provided once
the plant is at rest, and open-loop system responses for vari-
ous values of β are collected. Beginning with βAlg = 1000,
βDer = 1000 and reducing their values until the control sig-
nal attempts to oscillate at βAlg = 1, βDer = 45. Afterward,
The proportional gain KP is adjusted so that the tracking
error is reasonable. Finally, βAlg and βDer are set to 3 and
100 respectively.
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Fig. 5 Sinusoidal trajectory—Algebraic estimation of the unmodeled
dynamics

Fig. 6 Sinusoidal trajectory—Control signal effort for the algebraic
estimator with iPD

Fig. 7 Sinusoidal trajectory—Control signal effort for the derivative
estimator with iPD controllers

Figure 2 illustrates the numerical results of the proposed
controllers where the main purpose is to maintain a desired
sinusoidal output position in the presence of the previously
mentioned causes of uncertainties. At time t = 0.01 s, the
estimation of the function F and the angular velocity start the
online update as illustrated in Figs. 4 and 5, with a voltage
control effort signal presented in Figs. 6 and 7, respectively,
in order to cancel the perturbations resulting from Coulomb
friction effects.

Figure 8 shows the position tracking error using the two
proposed controllers based on algebraic and derivative esti-
mators. The feedback controller adjusts the DC motor’s
position, drives the state errors to a relatively short time frame
of zero, and regulates for the model parameters’ errors.

Fig. 8 Sinusoidal trajectory—Tracking error evolution using alge-
braic/derivative estimators with iPD

Fig. 9 Perturbed Bezier’s trajectory—Position tracking of the DC
motor in the presence of Coulomb’s friction effects using algebraic
estimator with iPID

Table 2 Sinusoidal trajectory–Effectiveness of the control techniques
based on ISE, IAE and ITAE criterions

Control technique ISE IAE ITAE

iPD + Derivative Estimator 0.12×10−2 0.03 0.03

iPD + Algebraic Estimator 0.48×10−3 0.01 0.002

Classical PD 0.4×10−2 0.19 0.96

Table 3 Perturbed Bezier’s trajectory—Effectiveness of the control
techniques based on ISE, IAE and ITAE criterions

Control technique ISE IAE ITAE

iPD + Derivative Estimator 0.41×10−2 0.09 0.21

iPD + Algebraic Estimator 0.1×10−2 0.08 0.19

Classical PID 0.86×10−2 0.26 0.47

The research results show an excellent model-free control
tracking efficiency, which is easily better tracked when an
integral factor is included. In the derivative scheme, the con-
trol signal was noisier, and the system less robust. Increasing
the estimation window can increase the filtering characteris-
tics, but the resulting delay may cause the closed-loop to be
unstable.

In Figs. 9 and 10, we set an eighth order Bezier’s poly-
nomial input disturbance signal that is large enough for the
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Fig. 10 Perturbed Bezier’s trajectory—Position tracking of the DC
motor in the presence of Coulomb’s friction effects using derivative
estimator with iPID

Fig. 11 Sinusoidal trajectory—Comparison between alge-
braic/derivative estimators with iPD and classical PD

system to deform the input signal to evaluate the controller’s
smoothing efficiency for the cases of algebraic and derivative
estimators.

Furthermore, the performance of the control approaches
has been analyzed according to the integral time absolute
tracking error, I T AE = ∫ t f

ti
t
∣∣eθm (t)

∣∣ dt , the integral abso-
lute tracking error, I AE = ∫ t f

ti

∣∣eθm (t)
∣∣ dt , and the integral

squared tracking error, I SE = ∫ t f
ti

e2θm (t)dt , in which ti =
0 s and t f = 10 s denote the simulation’s initial and final
times. The ISE and IAE standards classify all tracking errors
uniformly.Moreover, since time is a significant consideration
in the ITAE standard, errors that eventuate slowly are highly
penalized, while errors that arise slightly earlier are ignored.
Tables 1 and 2 compare the obtained results, illustrating that
the proposed control of the ultra-local model based on alge-
braic estimator slight performs better than the model based
on derivative estimator.

Finally, the proposed ultra-local model-based algebraic/
derivative estimator approaches are compared to a classi-
cal PID, which is among the most widely used controllers.
A classical PD is used for the sinusoidal trajectory, and a
classical PID is used for the perturbed Bezier’s trajectory.

Fig. 12 Sinusoidal trajectory—Tracking error evolution using classical
PD

Fig. 13 Perturbed Bezier’s trajectory—Position tracking of the DC
motor in the presence of Coulomb’s friction effects using classical PID

The PD/PID controllers were hand-tuned to achieve a quick
closed-loop response with minimal overshoots across the
desired trajectory.

Figures 11 and 12 depict the obtained results. In the tran-
sient region, the iPD controllers track the desired trajectory
faster than the classical PD controller. This is attributed to the
control law’s factor ẏd , see Eq. (7). Moreover, the proposed
approaches provided accurate robust tracking results with
regard to the Coulomb friction disturbances. It can be seen
from Figs. 9, 10 and 13 that iPIDs for the case of algebraic
and derivative estimators strongly cancel the perturbations
and provide smooth Bezier trajectory. At t = 0.25 s, the
PID controller reveals an overshoot that can be minimized
at the tradeoff of slow tracking. A comparison in terms of
ISE, IAE and ITAE criterions is highlighted in Tables 2 and
3. The other potential problem with the classical PID is how
to provide an appropriate adaptability as the plant changes
over time; this can be solved using the proposed ultra-local
model based on algebraic and derivative estimators.

8 Conclusion

This work discussed model-free controllers’ design based on
the ultra-local model combined with algebraic and derivative
estimators and their application on aDCmotor position track-
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ing. Particularly, different necessary implementing details
including the discrete implementation of the estimators and
the control law parameters’ tuning procedure are demon-
strated and successfully implemented using FIR filters.

Simulation results show that the ultra-localmodel’s imple-
mentation via derivative estimation is feasible and reliable
when used as an observer in closed-loop control, but the alge-
braic estimation still gives better results. All the presented
controllers had an excellent robust tracking performance
regarding the Coulomb friction disturbances and uncertain-
ties and compared to the classical PID.

The proposed algebraic and derivative estimation tech-
niques are significant since they are based exclusively on
algebra, preventing a nonlinear observer, complex mathe-
matical modeling tasks, and providing a fast and accurate
estimation.

The main flaw in the algebraic/derivative estimators lies
with the need for a high-frequency sampler and the assertion
that the computing effort is increased following the filter’s
length and is limited to fast hardware applications. Interest-
ingly, it is not a challenge, as powerful hardware is currently
available and relatively inexpensive.

A further research incorporates a fractional-order study
of the ultra-model’s output for 0 < v < 1. Besides that, the
proposed approaches should be also tested on different other
models.
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