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Abstract— The present paper proposes the recent Model-
free Control (MFC) approach applied to a position control 
scheme for a DC motor with uncertainties and unmodeled 
dynamics. This novel technique guarantees a fast algebraic on-
line dynamics estimation for ultra-local model identification. It 
grants to keep out of complicated task of non-linear 
mathematical system modeling and leads to an explicit gain 
tuning. Comparisons are carried out between the proposed 
approach and the classical adaptive controller. Computer 
simulations have been verified using MATLAB/ Simulink. 
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I. INTRODUCTION  
 
      DC motors are convenient for numerous applications, 
inclusive of turntables, conveyors and others for which 
adjustable position and speed are desired. A high 
performance characteristics is required in all industrial 
applications [1]. In many practical implementations it may 
not be efficient and reasonable to measure all state variables. 
The alternative perspective is to use an estimation technique 
to estimate these state variables which are not measured, and  
being used later in the implementation of the feedback 
controller [2]. 
 
     The author in [3] applied a classical approach using the 
system model which is investigated almost generally, and 
enhanced the control performance by an adaptive control 
technique [4]. 
 
     Recently, Model-Free Control (MFC) technique is 
developed by M. Fliess and C. Join [5], based on an ultra-
local model that is continuously updated on the report of the 
input-output behavior. It is designed to take control of the 
uncertainties and system unmodeled dynamics for linear 
systems as well as nonlinear systems. Research is being 
processed on the effect of the MFC on magnetic levitation 
system [6], Hybrid unmanned aerial vehicles (UAVs) [7], 
active magnetic bearing [8], vehicles brake system control 
[9]. 
 
     In this article we set out an asymptotic algebraic method 
using MFC, which covers the execrably known parts of the 
plant along with the distinct possible disturbances, not 

requiring to make any notability between them in order to 
implement a control scheme.  
      
     The objective of this paper is to investigate the efficiency 
of the Model-Free Controller (MFC) over the classical 
adaptive controller on DC motor position control. 
 
    This paper is structured as follows: Section 2 presents the 
used DC motor model and the problem statement. Section 3 
presents a general review of MFC approach and its control 
design for a DC motor with coulomb friction effects.  For 
comparison, an adaptive control technique is also presented. 
In Section 4, simulation results are presented. Finally, a 
conclusion is devoted to concluding remarks. 

II. MOTOR MODEL 
 

In this section, we first recap the linear model of the DC 
Motor.  

A. Physical setup 
  The main dynamic equation of the DC motor system is 
acquired by Newton’s Second Law: 
 

�� � ����	 
 ����	 
 
������	��                       (1) 

   Where, v is the viscous friction coefficient (N m s), J is the 
inertia of the motor (kg m2), k is the electromechanical 
constant (N m / V). �m(t) stands for the angular position of the 
motor (rad), ���	 is the acceleration of the motor (rad/s2) and 
���	 is the velocity (rad/s). 
    This linear model is affected by an unknown perturbation 

��  (N m) input caused by Coulomb friction effects [10], 
which depends only on the sign of the angular velocity of the 
motor (the case when the motor rotates) of the form 
���������	� where,  � is a constant, and when the velocity is 
null the friction counteract to the torque generated by the 
input voltage with respect on its sign. 

 

B. Problem statement  
For a stated appropriate smooth reference trajectory �m

*(t) 
for a position tracking of the DC motor described previously 
by the dynamics presented in (1), and taking in consideration 
the supposedly signal input noisy measurements, V, and of the 
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output signal, �m(t), in addition to the presence of unknown 
nonlinear effects produced by Coulomb friction or model 
parametric uncertainties, the feedback controller have to 
undertake the asymptotic tracking of �m

*(t) exactly by the 
system output �m(t). 

 

III. CONTROLLER DESIGN FOR THE DC MOTOR 

A. Model-free control (MFC) approach overview 
 

     Given nth order nonlinear SISO system: 

���� � ���� �� �� � � ����� 
 ��                       (2) 

Where, u is the system input, � is unknown input factor 
and �� �  is the modeled system dynamics. 

The uncertainties and un-modeled dynamics with the 
unknown input factor may be represented in the system 
as  �!: 

�!� � � "#$%&�'�(%)*+��*�%� 
 �� , -��              (3) 

Consequently, the system can be written as follows:  

��.� � �� � 
 �!� � 
 -�                            (4) 

Where, v is represents the order of the expected 
model, and - is the estimate of the unknown scaling factor � 
that is going to be selected by the practitioner to ensure a 
certain control performance.[11] 

The input-output relationship is then represented by an 
ultra-local model that is continuously updated: 

��.� � / 
 -�                                      (5) 

   Where, F is a constantly updated parameter that represents 
the overall dynamics of the system �� � 
 �!� �, and it may 
be approximated to reduce the noise generated by the 
derivative ��.�.[5] 

/ � ��.� , -�                                   (6) 

   Take note that the parameter of estimation is valid for a 
short period of time and it must be constantly updated [5]. 
Generally, the model-free control signal may have the 
following form: 

� � , 0123
�4�567
8                                   (7) 

   Where, �9
�.� is the vth derivative of the reference trajectory, 

and uc is the control signal of the feedback controller. 

   Substituting then (7) in (6),  

��.� � / 
 - :, 0123
�4�567
8 ; � �9

�.� , ��              (8) 

   That being so,  

��.� , �9
�.� 
 �� � <                                 (9) 

%�.� 
 �� � <                                   (10) 

    Where, %�.�is the vth derivative error of (e = y-yd ), and �� 
have to be chosen to undertake the linear differential equation 
that is asymptotically converged to the require trajectory. [5] 

    The practitioner has to pick a fitting value of v which is 
always chosen to be quite low, i.e., 1, or, rarely, 2, depending 

on the system stability and the feedback controller type 
utilized in the system.  

   To make this assertion evident, let v=1, thus (10) will be as 
follows: 

%� 
 �� � <                                    (11) 

   A first order differential equation may be expressed, if PD 
or P controller is implemented: 

%� 
 =>% 
 =?%� � <                              (12) 

    Likewise, if v=2, then a second order differential equation 
may be expressed, if PID or PD controller is used: 

%� 
 =?%� 
 =>% 
 =@ A % � <                    (13) 

   Fig. 1 illustrates a MFC scheme for a single-input single-
output system while v = 1. 

 
Figure 1 MFC design 

     As Fig. 1 exhibits, the ultra-local model in (5) will evaluate 
the value of the parameter F on every single iteration of the 
feedback controller. The system un-modeled dynamics will 
be estimated by updating the value of F, and set a suitable 
control input to the DC motor plant. 

Remark: The measured output “y”, the desired input “yd”, 
the control signal “u” represents: “�m(t)”, “�m

*(t)”, “V” 
respectively in (1). 

1)  Online estimation of the parameter F 
 

   Taking Laplace transform on the ultra-local model in (5) 
where, v=1 and assuming that F is constant for a short period 
of time: 

�B��� , ��<� � 0
C 
 -D�E�                        (14) 

  Differentiating with respect to s in order to eliminate ��<�: 

B��� , � 9
9C B��� � ,�1F/ 
 - 9

9C D�E�                (15) 

   Then, multiplying by G
CH  for filtering and eliminating the 

time derivatives, by letting every component being integrated 
at least once to have a low-pass filters which attenuate noises: 

G
CH B��� 
 G

C
9

9C B��� � , G
CIJ / 
 - G

CK
9

9C D�E�         (16) 

   Using the inverse Laplace transform properties and classic 
rules of operational calculus, the resulting expression of (16) 
in time domain will be: 

/ � 1L
MK A �* , NO���O�$OM

P , L8
MK A O�* , O���O�$OM

P         (17) 

  The above expression can be digitally implemented using 
FIR filter.[12] 

  For the ultra-local model in (5), the estimation of the 
derivative ��.�  (i.e., v=1 ) is achieved using distinct de-
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noising approaches [8] [11] [13]. For straightforwardness, 
low-pass filters are used in the coming simulations to reduce 
the produced noisy signals by the numerical differentiation. 

 

2)  Control law / PD tuning  
 

    Consider that � = 1 in (5):  
 

Q� � / 
 -�                                       (18) 
 

    Closing the loop as in Fig. 1 including a PID controller: 

� � 10523� 1RS A !1RT!1RU!�
8                       (19) 

   Where, yd is the desired trajectory, e = y - yd is the tracking 
error and KI, KP, KD are the frequent PID tuning gains.  

   Choosing KI = 0, KP = �2 and KD = 2�, � € R+ results in a 
stable closed loop system with two real negative poles (-�): 

%� 
 VF% 
 NV%� � <                              (20) 

 

B. Closed-loop adaptive PD controller 
    This subsection is devoted for the second approach which 
is the adaptive control technique.   

  Consider the second order perturbed system given in (1). 
supposing that J and v are unknown parameters and they are 
not linearly identifiable. Then, the parameter K / J could be 
denoted by A and the parameter v /J denoted by B are linearly 
identifiable. Considering the fact that K=k /n, where n is the 
is the reduction ratio of the motor, WX � YZ7

�[  and after some 
mathematical rearrangements, we obtain:  

\� � ���	 
 ]���	 
 
X�                       (21) 

1)  The Procedure of Algebraic Identification 
 

Firstly, we proceed to identify the unknown system 
parameters A and B as follows:  

• The last above expression is multiplied on both sides 
by s-1, to have a second linear equation for just A, and 
B. These parameters can be easily acquired by 
solving the resulted linear equations. 

• Using operational calculus in (21) and taking the 
third derivative with respect to the complex variable 
s, we obtain an independent of initial conditions 
formula [3]. 

• Multiplying both sides of the resulting expression 
by s-3 in order avoid derivations. 

Thus, we obtain the following Eq:  

] ^�1G 9K_`�C�
9CK 
 a�1F 9H_`�C�

9CH 
 a�1b 9_`�C�
9C c ,

\ ^�1F 9Kd�C�
9CK 
 e�1b 9Hd�C�

9CH c � ,f9K_`�C�
9CK 


��g�1G 9H_`�C�
9CH 
 hi�1F 9_`�C�

9C 
 a�1b�	���j�                 
(22) 

Back to the time domain, the linear equation of the 
unknown parameters A and B can be expressed as: 

]kGG�*� , \kGF�*� � ,lGG�*��                  (23) 

Where,  

kGG�*� � , A *b�	 
 m *F �	 , a n *�	�          (24) 

  kGF�*� � , m *b� , e n *F�                  (25) 

lGG�*� � ,*b�	 , g A *F�	 
 hi m * �	 , a n �	�    (26) 

   Equation (22) is multiplied on both sides by s-1 once more, 
this leads to a second order linear equation for the estimation 
of A, and B, such that: 

kFG�*� � A kGG� � �kFF�*� � A �kGF���� ��lFG � � A lGG               

   This linear system can be represented in matrix form as: 

op � q�                                      (27) 

   where, P is a matrix composed of time dependent 
coefficients, X is a column vector of the parameters B and A, 
and Q is also a column vector with time dependent 
coefficients. Its general form is given by: 

rkFG kGFkFG kFFs r]
\s � rlGGlFGs�                        (28) 

    Finally, the estimation of the parameters A and B can be 
easily obtained by solving the following linear equations: 

\ � 1>Ht�M�>tt�M�5>tt�M�uHt�M�
>tt�M�>HH�M�1>tH�M�>Ht�M� �                     (29) 

] � >HH�M�utt�M�1>tH�M�uHt�M�
>tt�M�>HH�M�1>tH�M�>Ht�M��                       (30) 

   Secondly, we proceed to Identify the Coulomb’s 
friction coefficient, by considering the system given in 
(21), where, WX � ���������	�, such that �  is the scaled 
coulomb’s friction amplitude. Then, we can identify the 
perturbation term ���������	�  produced by the 
Coulomb’s friction torque using this expression: 

����� ^���	c � \� , ���	 , ]���	�                     (31) 

2) Control law / PD tunig  
 

   A PD controller is designed by replacing the closed-
loop poles of the system in Fig. 2 in faraway location of 
the negative real axis: ,v with v >0, such that, wx?��� �
�> 
 �?� where, kP, kD are the gains. If the motor system 
has initial values A0 and B0, thus, the stability condition of 
the closed-loop formula  �h 
 y	zMz{���wx?���� leads to 
have the following characteristic polynomial: 

�F 
 ��?\P 
 ]P�� 
 �>\P � <                   (32) 

     Identifying the above coefficients of the closed-loop 
characteristic polynomial (32) with those of a desired 
second-order Hurwitz polynomial by using the bellow 
desired second-order polynomial: 

o��� � �� 
 ��F � �F 
 N�� 
 �F                (33) 
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  Where, v  represents the location of the closed-loop 
poles. Equating the identical terms of the equations (32) 
and (33), the tuning gains kP0 and kD0, which depend on 
the system parameters, could be obtained by computing 
the following expressions: 

�>P � |
}~

F � �.P � F|1�~
}~

                        (34) 

 
Figure 2 Adaptive control scheme 

   Fig. 2 depicts the closed-loop feedback adaptive control 
system. At time t0, by switching ON s0, the estimator is 
initiated. In a short duration t1, the algebraic estimator 
evaluates the parameter values A, B and 
�� � ��� of the 
DC motor. then, the PD controller is permanently 
updated, by switching ON s1, the new updated adaptive 
controller has the subsequent gains: 

�x � |
}

F � �? � F|1�
}                         (35) 

    For the estimation of Coulomb’s friction, 
�� , a 
compensation term is injected in the system to eliminate 
the effect of this disturbance. The compensation term is 
added in the control input signal to the plant such that: 

� � �� 
 
X ��
�                                 (36) 

Where, ��  is the control voltage produced by the 
controller, and WX [�

�  is the introduced voltage to 
compensate the Coulomb friction effect. When �� 	 � <,  
WX�is evaluated by the form WX � ���������	�. In the other 
hand, when �� 	 � < , the voltage to the motor may be 
different from null value, there is a constant friction 
torque counteract to the torque produced by the control 
signal. That effect is attenuated by computing the 
compensation term as WX � ��������. 

�
IV. SIMULATION RESULTS 

    This section is devoted to show that computer simulations 
were accomplished with a view to verify the performance of 
the proposed control techniques. 
 

A)  Parameters of the DC Motor  

  The DC motor used is of type RH-8D-6006-E036AL-SP(N) 
which has the following description: 

• Electromechanical constant � � < Nh��������. 
• Inertia � � a i� X h<1������F�. 
• Viscous friction � � h <�h X h<1b�����E�.  

• Coulomb friction coefficient � � ��� �
< hhg����� 

• Reduction ration n=50. 
 
   The motor shaft may turn either left or right around the 
vertical axis. 

 

B)  Simulation results of the adaptive controller 

���   The transfer function considered for the PD controller 
was set as PD(s) = kP + kD with gains {kP, kD} that are 
designed to place the closed loop poles in a faraway 
location of the negative real axis, say -120, setting A0=150 
and B0 =0.5 as initial values. Thus, the parameters values 
obtained of the PD controller are: kP0 =96 and kD0 =1.60. 
The desired trajectory evolution used for the position 
tracking problem of the DC motor is defined as a 
sinusoidal input with an amplitude of 1 and a frequency 
of 1 (rad/s). When the switch s0 is ON at time t0=0.16 (s) 
The control system depicted in Fig. 2 begins to elaborate 
with the PD controller with initial values kP0 and kD0. At 
time t =t0+0.16 (s) good estimation of the motor 
parameters are obtained: 

 A=61.13 (N/ (V kg s)) and B =15.15 (N s/ (kg m)) (see 
Fig. 3 and 4). 

 
Figure 3 Estimation of the parameter A 

 
Figure 4 Estimation of the parameter B 

   By switching ON the switch s1 at time t1 =0.35 (s) the 
PD controller is updated with these new estimated 
parameters, kP =368.1 and kD =1.75. Fig. 5 depicts the 
scaled Coulomb’s friction coefficient instantaneously 
evaluated after the estimation of the parameters A and B. 
� = 34.72 ((N m)/ (kg m2)). The compensation voltage 
term is evaluated at time t1 as shown in (36),                  
WX � h N�����. 

 
                Figure 5 Coulombs friction coefficient � estimation 
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   Fig. 6 shows the evolution of the tracking error. Fig. 7 
illustrates the Sinusoidal trajectory tracking using the PD 
adaptive controller. Noting that until t1 =0.35 (s), the error 
is high when the controller is operating with the initial 
values. Fig. 8 depicts the control signal to the DC motor. 
As Noted previously that at time 0.35 (s), a peak in the 
control signal is produced by the update of the controller.  
After this time, the control signal is noisier for the reason 
that this signal contains the friction compensating term. 
In fig. 9 we add a perturbation signal that is high enough 
to distort the input signal in order to observe the 
smoothing effect of the controller.  

 
Figure 6 Evolution of the tracking error using adaptive controller 

 
Figure 7 Sinusoidal trajectory – evolution of the DC motor, using adaptive 

control  

 
Figure 8 Control signal u(t), using adaptive control 

 
Figure 9 Perturbated Sinusoidal trajectory – evolution of the DC motor, 

using adaptive control  

C)  Simulation results of the model-free controller 

  In the subsequent simulations, the parameter v in (6) is set 
to be equal to 1, then,      

��G� � / 
 -�                                       (37) 

   Where, y represents the measured output of the DC motor 
system model which is �m for this case study, and yd represents 
�m

* (the desired trajectory tracking) (see Fig. 1). 

    For comparison purpose, as set previously the desired 
reference trajectory used for the tracking problem of the DC 
motor is specified as a sinusoidal input with an amplitude of 
1 and a frequency of 1 (rad/s). F, which is a continuously 
updated parameter, it subsumes the poorly recognized parts 
of the plant, as well as the various possible disturbances, 
without the need to make any distinction between them, it is 
approximated by a piecewise constant function as shown in 
Fig 10.  

      Measurements are usually noisy. Therefore, using a filter 
is extremely recommended. the derivative estimator is a way 
to express the estimator F as an integral over a short interval      
[t-T, t]. this integral is considered as a low pass filter (see [12] 
for more detail) , then equation (17) may take the form: 

 
/� � 1L

�K A �� , NO���O�$O�
P , L8

�K A O�� , O���O�$O�
P      (38) 

   and can be represented in discrete form, 

 

/�� � 1L��
������K � ���C , N������ , ���C�� ,

-f���C , ������ , ���C�j
����P                  (39) 

    Such that, T= nsTs where, T is the estimation window, ns is 
the number of samples (ns =2000), and Ts is the fixed sample 
time (Ts=0.0001 s). 

 
Figure 10 Algebraic estimator (F) of the un-modeled dynamics 

  The control law is applied to the system by choosing - � e  
taking into account that -� and ��  are of the same magnitude 
(detailed tuning procedure can be found in [9]). After closing 
the loop as in Fig. 1, including a Proportional-Derivative 
action (i-PD) and selecting KI = 0, KP = �2 and KD = 2� where, 
V � �a then the control signal is generated as in Fig. 11, 
based on that the desired evolution of the DC motor position 
is shown in Fig. 12 as well as the tracking error in Fig. 13. 
 
 

 
Figure 11 Control signal u(t), using MFC 
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Figure 12 Sinusoidal trajectory – evolution of the DC motor, using MFC 

control approach 

 
Figure 13 Evolution of the tracking error using MFC 

 
   Fig. 14 below depicts a noisy desired trajectory “�m

*”. It can 
be observed that the model-free controller neglects this 
perturbation in the output signal. 
 

 
Figure 14 Perturbated Sinusoidal trajectory – evolution of the DC motor, 

using MFC 

V. CONCLUTIONS 
     The simulation results exhibit that the estimation 
procedure for identifying several parameters of the DC motor 
dynamics system model (takes few seconds) along with its 
application in the adaptive control approach have carried out 
effectively on the DC motor. A challenging problem is put 
aside if the system model has higher order or being nonlinear 
then the mathematical modeling become very complicated to 
identify as well as using this identification in the control 
procedure. Whereas the online estimation using the ultra-
local model grants to keep away of complicated tasks of 
mathematical system modeling and allows a real time update 
of the model without caring about the linearity of the system 
or identifying the distinct system parameters, just the value of 
the parameter F is enough to summarize all uncertainties and 
the un-modeled dynamics.  

   By virtue of MFC design action, the PID tuning gains 
procedure becomes easier than classic techniques. 

 

    It’s interesting to notice too that model-free control 
provided a precise tracking performance, starting from the 
transient response that is very fast in time (few milliseconds) 
and robust in proportion to the Coulomb friction disturbances 
as well as the perfect smoothing of the perturbated reference 
trajectory, in addition to the very small tracking error 
compared to the adaptive control approach. 
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