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Abstract— A cascaded nonlinear sliding mode controller is
proposed for power production optimization of a variable speed
wind turbine equipped with a Doubly Fed Induction Generator
(DFIG). The inner loop controller ensures a robust tracking
of both generator torque and rotor flux, while the outer loop
controller achieves a robust tracking of the optimal blade rotor
speed to optimize wind energy capture.
The global controller is firstly tested with a simplified mathema-
tical model of the aeroturbine and DFIG for a high-turbulence
wind speed profile. Secondly, the aeroturbine controller is
validated upon a flexible wind turbine simulator. The obtained
results show better performance in comparison with the existing
controllers in presence of parameters variations.

Index Terms— DFIG, nonlinear control, sliding mode, va-
riable speed wind turbines.

I. INTRODUCTION

Wind energy conversion systems (WECS) have quickly

evolved over the last decades and efficient and reliable

exploitation tools have been developed to make these instal-

lations more profitable [1]. Modern high-power wind turbines

(WT) are equipped with adjustable speed generators [2]. The

doubly fed induction generator (DFIG) with a power conver-

ter is a common and efficient configuration to transfer the

mechanical energy from the variable speed rotor to a constant

frequency electrical grid [3]. Many contributions have been

devoted to the control of the aeroturbine mechanical as

well as the electrical components [4]. The control objective

consists mainly in optimizing the extracted aerodynamic

power in partial load area. The control design is generally

based on a linearized model of the WT around its operating

points [5]. For the DFIG control, classical control techniques

as vector control [6] were extensively used. Some nonlinear

controllers were proposed assuming that the wind turbine

operates in steady state conditions [7]–[9]. The nonlinear

dynamical nature of the wind and the turbine is not taken into

account. Furthermore, as these nonlinear control techniques

are almost parameters dependent, they are indeed affected

by the parameters deviations.

The objective of this work is to design two cascaded non-

linear robust controllers for the wind turbine. The first one

concerns the aeroturbine, while the second one is devoted

to the DFIG. These controllers are designed using the

dynamical features of the wind speed, the aeroturbine and

the DFIG together with their non-linear characteristics. They

must stand robust under parameters variations.
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This paper is organized as follows : The wind turbine and

DFIG nonlinear mathematical models are presented in the

section II. The control objectives are briefly reminded in

section III. Section IV is concerned with the DFIG control,

namely the nonlinear input-output linearization and sliding

mode controllers. The aeroturbine linearizing and sliding

mode controllers are developed in section V according to the

required specifications. Simulation results, using a realistic

wind turbine simulator, are given in section VI to show

the effectiveness of the proposed sliding mode control with

respect to the nonlinear input-output linearization control.

II. WIND TURBINE MODELLING

A. Aeroturbine modelling

The aerodynamic torque expression is given by

Ta =
1

2
ρπR3Cq(λ ,β )v2 (1)

The torque coefficient Cq depends on the blade pitch angle

β and the tip-speed ratio λ which is defined as follows

λ =
ωtR

v
(2)

where ωt is the rotor speed R is the rotor radius and ρ is the

air density.

As the low-speed shaft is assumed to be perfectly rigid, a

single mass model of the turbine may then be considered [10]

Jths
ω̇g = Tahs

−Kths
ωg −Tem (3)

Jths
, Kths

and Tahs
are respectively the total inertia, external

damping and aerodynamic torque brought to the high-speed

side. The reader is referred to [10], [11] for more details

about aeroturbine modelling and parameters values.

B. DFIG modelling

The DFIG mathematical model can be described by the

following nonlinear state space representation. The electrical

variables are considered in a d −q reference frame fixed to

the stator. The system is a MIMO affine-input nonlinear one.
{

ẋxx = fff (xxx)+ggguuur +ddd111uuus +ddd222Tahs

yyy = hhh(xxx)
(4)

where

xxx =
[

isd isq φrd φrq ωg

]T
; Tahs

= Ta
ng

uuusss =
[

usd usq

]T
; uuurrr =

[

urd urq

]T
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and

fff (xxx) =





















f1(x)

f2(x)

f3(x)

f4(x)

f5(x)





















=





















a11x1 +a13x3 +a14x4x5

a11x2 +a13x4 −a14x3x5

a31x1 +a33x3 +a34x4x5

a31x2 +a33x4 −a34x3x5

a51(x2x3 − x1x4)+a55x5





















with

a11 = −
(

1
Tsσ + 1

Tr

1−σ
σ

)

a13 = 1−σ
σ

1
MTr

a14 = 1−σ
σ

p
M

a31 = M
Tr

a33 = − 1
Tr

a34 = −p

a51 = p M
Jths

Lr
a55 =

−Kths
Jths

and

ggg =













b1 0

0 b1

1 0

0 1

0 0













; ddd111 =













b2 0

0 b2

0 0

0 0

0 0













; ddd222 =













0

0

0

0

b3













with

b1 = − M
σLrLs

; b2 = 1
σLs

; b3 = 1
Jths

Rs and Rr are respectively the stator and rotor resistance,

Ls, Lr and M the stator leakage, rotor leakage and mutual

inductances. σ = 1−
M2

LrLs

is the scattering coefficient, Ts and

Tr are the stator and rotor time constants. p is the number

of pole pairs.

The control inputs are the DFIG rotor voltages uuurrr in the d−q

reference frame. The stator voltages and aerodynamic torque

can be viewed as uncontrolled inputs.

The two outputs are the rotor flux squared modulus and the

electromagnetic torque

yyy =

[

h1(x)
h2(x)

]

=

[

|φr|
2

Tem

]

=

[

x2
3 + x2

4

µ (x1x4 − x2x3)

]

where µ = p · M
Lr

.

The used DFIG parameters corresponds to a 660 kW nominal

power and are referenced in [12].

III. CONTROL PROBLEM FORMULATION

A. Control objectives

The aerodynamic power captured by the aeroturbine rotor

is given by

Pa =
1

2
ρπR2Cp(λ ,β )v3 (5)

The Cp(λ ,β ) curve is specific for each wind turbine. It has

a unique maximum Cpopt at a single point

Cp(λopt ,βopt) = Cpopt (6)

In order to maintain λ at its optimal value for a given wind

speed v, the rotor speed must be adjusted using the generator

torque to track the reference ωtopt =
λopt

R
v.

Fig. 1. Wind Turbine Control scheme

The system output to be controlled is the rotor speed ωt

and the control problem is the tracking of an optimal rotor

speed reference ωtopt that ensures maximum wind power

capture. Notice that the blade pitch angle could be used

as an additional control input to achieve electrical power

regulation, for high wind speeds.

B. Control Structure

The WT electric system time responses are much faster

than those of the other parts of the WT (Fig. 1). This makes

it possible to dissociate the generator and the aeroturbine

control designs and thus define a cascaded control structure

around two control loops.

1) The inner control loop concerns the electric generator

via the power converters.

2) The outer control loop concerns the aeroturbine that

provides the reference inputs of the inner loop.

IV. DFIG ROBUST CONTROL

A. Input-Output Feedback Linearization

We will first assume the system is perfectly modeled.The

input-output decoupling linearization is then performed via

a nonlinear state feedback.

The notation L f h(x) is used for the Lie derivative of the

output function h(x) along the vector field f (x) and is defined

as

L f h(x) =
n

∑
i=1

∂h

∂xi

· fi(x) (7)

As Ld2
h1 = Ld2

h2 = 0, the first time derivative of the outputs

can be written as
[

ẏ1

ẏ2

]

=

[

L f h1

L f h2

]

+DDDrrr

[

urd

urq

]

+DDDsss

[

usd

usq

]

(8)

where






L f h1 = 2(a31(x1x3 + x2x4)+a33 |φr|
2)

L f h2 = (a11 +a33)Tem+

µ(−a34(x1x3 + x2x4)+a14 |φr|
2)x5

DDDrrr =

[

Lg1
h1 Lg2

h1

Lg1
h2 Lg2

h2

]

=

[

2x3 2x4

µ(b1x4 − x2) µ(x1 −b1x3)

]

and

DDDsss =

[

Ld11
h1(x) Ld12

h1(x)
Ld11

h2(x) Ld12
h2(x)

]

=

[

0 0

µb2x4 −µb2x3

]
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Choosing
[

urd

urq

]

= −D−1
r ·

[[

L f h1

L f h2

]

+Ds

[

usd

usq

]

−

[

v1

v2

]]

(9)

equation (8) is reduced to the linearized and decoupled

system
[

ẏ1

ẏ2

]

=

[

v1

v2

]

(10)

To ensure a first order tracking dynamic of the squared

rotor flux |φr|
2

and electromagnetic torque reference Temre f

references, the new control inputs v1 and v2 are given by

v2 = −l2(|φr|
2 −Φr)+ Φ̇r

v1 = −l1(Tem −Temre f
)+ Ṫemre f

(11)

where l1 and l2 are constants that determine the tracking

dynamic.

B. Nonlinear Sliding Mode control

In presence of modelling uncertainties, a robust controller

is needed to achieve a high-performance control.

Let us introduce the control vector surface SSS = [s1 s2]
T

defined by :
{

s1 = |φr|
2 −Φr = y1 − y1re f

s2 = Tem −Temre f
= y2 − y2re f

(12)

Defining

fff ∗ =

[

L f h1

L f h2

]

+DDDsss

[

usd

usq

]

equation (8) can be rewritten as

ẏyy = fff ∗(xxx)+DDDrrruuurrr (13)

If we assume that the parametric uncertainties on the DFIG

model parameters are gathered in the functions fff ∗ and DDDrrr

and satisfy the fellowing bounds
∣

∣ f ∗i (xxx)− f̂ ∗i (xxx)
∣

∣ ≤ δi

DDDrrr = (I +∆∆∆)D̂DDrrr,
∣

∣∆i j

∣

∣ ≤ Di j

(14)

By choosing the Lyapunov function

V =
1

2
SSST SSS =

1

2

2

∑
i=1

s2
i (15)

The control inputs uuurrr are then chosen in order to satisfy the

sufficient conditions for the existence and reachability of a

sliding mode [13] :

siṡi ≤−ηi |si| , i = 1,2. (16)

where ηηη = [η1 η2]
T

are positive constants.

The proposed sliding mode controller is composed of a nomi-

nal part and an additional terms to handle model uncertainties

uuurrr = D̂DDrrr
−1

·
[

ẏyyre f − f̂ff ∗(xxx)−KKK ·×sgn(SSS)
]

(17)

where the operators sgn(.) and ·× are defined as [14]

sgn(SSS) =
[

sgn(s1) sgn(s2)
]T

xxx ·×yyy = [x1 · y1,x2 · y2, · · · ,xn · yn]

and

KKK =
[

k1 k2

]T

From (15),

V̇ = s1 · ṡ1 + s2 · ṡ2

substituting (13) in s1 and s2 time derivatives obtained

from (12) yields














































ṡ1 = f ∗1 − f̂ ∗1 +
2

∑
j=1

∆1 j(ẏ jre f
− f̂ ∗j )−∆12k2sgn(s2)

−(1+∆11)k1sgn(s1)

ṡ2 = f ∗2 − f̂ ∗2 +
2

∑
j=1

∆2 j(ẏ jre f
− f̂ ∗j )−∆21k1sgn(s1)

−(1+∆22)k2sgn(s2)

From the above equations, as
∣

∣ f ∗i (xxx)− f̂ ∗i (xxx)
∣

∣ ≤ δi and
∣

∣∆i j

∣

∣ ≤ Di j for i = 1,2, to satisfy the existence and reacha-

bility condition (16), the gains k1,k2 in (17) must verify the

following inequalities [15], [14].

s1ṡ1 ≤ |s1| ·

[

δ1 +
2

∑
j=1

D1 j ·
∣

∣

∣
ẏ jre f

− f̂ ∗j

∣

∣

∣

−D12 · k2 − (1−D11)k1

]

≤−η1 · |s1|

(18)

s2ṡ2 ≤ |s2| ·

[

δ2 +
2

∑
j=1

D2 j ·
∣

∣

∣
ẏ jre f

− f̂ ∗j

∣

∣

∣

−D21 · k1 − (1−D22)k2

]

≤−η2 · |s2|

(19)

therefore, the condition is verified for all ki ≥ k′i, where

KKK′ =
[

k′1 k′2
]T

satisfies

(III − D̄DD)KKK′ = δδδ +DDD

∣

∣

∣
ẏyyre f − f̂ff

∗
(xxx)

∣

∣

∣
+ηηη (20)

with,

DDD =

[

D11 D12

D21 D22

]

; D̄DD =

[

D11 −D12

−D21 D22

]

According to Frobenius-Perron theorem [15], equation (20)

has a solution and all k′i are all positive.

As condition (16) holds, one has |S| → 0 and hence Tem →
Temre f

and |φr|
2 → Φr thanks to Barbalat’s Lemma [16].

V. AEROTURBINE ROBUST CONTROL

A. Nonlinear static feedback linearization with asymptotic

rotor speed reference tracking

In order to design a high-level controller of the aero-

turbine, it is more convenient to consider the one mass

model where all the inertias are transferred to the low speed

shaft [17].

Jtω̇t = Ta −Ktωt −Tg (21)

A first order dynamic response is selected for the rotor speed

tracking error as follows

ε̇ +a0ε = 0 , a0 > 0 (22)
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where ε = ωtopt −ωt .

As mentioned in [18], this is achieved by imposing the

fellowing control torque

Tg = Ta −Ktωt − Jta0ε − Jtω̇topt (23)

This technique has been shown to lack robustness with res-

pect to parameters uncertainties [15], so a nonlinear sliding

mode controller is developed next.

B. Nonlinear Sliding Mode control

Defining a third sliding surface

s3 = ωt −ωre f

it comes from (21) that

ṡ3 = f6 −
1

Jt

Tg − ω̇re f (24)

where f6 =
1

Jt

[Ta −Ktωt ]

By choosing the generator torque

Tg = Ĵt ·
[

f̂6 − ω̇re f +a0(ωt −ωre f )+ k3sgn(s3)
]

(25)

(24) is rewritten as

ṡ3 = ( f6 −
Ĵt

Jt

f̂6)− (1−
Ĵt

Jt

)ω̇re f −
Ĵt

Jt

a0(ωt −ωre f )

−
Ĵt

Jt

k3 · sgn(s3)

(26)

The reachability condition

s3 · ṡ3 ≤−η · |s3| (27)

holds for all k3 satisfying,

k3 ≥

∣

∣

∣

∣

Jt

Ĵt

f6 − f̂6 −

(

Jt

Ĵt

−1

)

ω̇re f −a0

(

ωt −ωre f

)

∣

∣

∣

∣

+η ·
Jt

Ĵt

Assuming,

∣

∣ f6 − f̂6

∣

∣ =

∣

∣

∣

∣

1

Jt

[Ta −Ktωt ]−
1

Ĵt

[

T̂a − K̂tωt

]

∣

∣

∣

∣

≤ δ6

and by setting κ =
Jt

Ĵt

, the control law (25) ensures a robust

tracking of the optimal rotor speed for all k3 verifying

k3 ≥ κδ3 +ηκ + |κ −1| ·
∣

∣ f̂6 − ω̇re f

∣

∣+a0 ·
∣

∣ωt −ωre f

∣

∣ (28)

VI. SIMULATION RESULTS

The numerical simulations were performed on a wind tur-

bine whose characteristics can be found in [12], [17]. These

parameters correspond to the Controls Advanced Research

Turbine (CART) which is located at NREL. The CART is

a variable-speed, variable pitch WT with a nominal power

rating of 600 kW and a hub height of 36 m. It is a 43-m

diameter, 2-bladed, teetered hub machine. It is assumed to

be coupled to a three-phase DFIG. Its characteristics are

given in the same table. This turbine was modelled with the

mathematical model and the FAST (Fatigue, Aerodynamics,

Structures and Turbulence) aeroelastic simulator for valida-

tion. FAST code is developed by NREL [19]. It is capable

of modeling two and three bladed propeller-type machines.
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Fig. 2. Wind speed profile of 7 m · s−1 mean value.

TABLE I

AEROTURBINE SLIDING MODE CONTROLLER PERFORMANCE FOR

DIFFERENT WIND SPEED PROFILES

Efficiency Ths standard max Tg

Mean wind speed [%] deviation [kN.m] [kN.m]

7 m/s 70.41 14.05 73.88

8 m/s 69.79 17.50 84.75

8.5 m/s 69.33 18.29 100.03

A. Using the simplified mathematical model

The proposed cascade control performances are firstly

tested using the simplified one-mass mathematical model

with the DFIG. All stator and rotor resistances Rr and Rs

are increased respectively by an amount of 50 %. The DFIG

control system performances are firstly investigated. In order

to reduce chaterring phenomenon and obtain an acceptable

control loads, the signum function in the control laws is

replaced by a smooth approximation using a hyperbolic

tangent sigmoid function. Though, this function does not

achieve a zero tracking error, it gives a good compromise

between chattering reduction and reference tracking.

As seen in Fig. 3(a), the rotor squared flux |φr|
2

reach the

constant desired reference Φr in less than 2 s. Despite the

parameters uncertainties, the maximal tracking errors remain

acceptable. The DFIG torque Tem is then independently

controlled to track the reference torque Temre f
. The torque

controller achieves a good performance while Tem and Temre f

are practically confused (Fig. 3(b)).

For the aeroturbine control system testing, the aeroturbine

rotor inertia Jt an damping Kt are also increased by an

amount of 50 %. Fig. 4(a) shows the blade rotor speed ωt

tracks the mean tendency of the optimal rotational speed

ωtopt without tracking the turbulent component. It is worth

noticing that this tracking performance has been achieved

in the presence of parameter uncertainties. The difference

between the rotor speed and its optimal reference appears

clearly during the start-up transient. Fig. 4(b) shows that the

wind turbine electrical power remain smooth. This is due

to the choice of an adapted optimal rotor speed tracking

dynamic. The simulation results show that the required

performance are reached using the two-levels robust sliding

mode controllers.
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TABLE II

COMPARISON OF THE CONTROL STRATEGIES

Efficiency Tls standard max Tg

Controller [%] deviation [kN.m] [kN.m]

Linearizing controller 64.71 12.18 72.12

Sliding mode controller 70.41 14.05 73.88

B. Validation using FAST

The high-level robust sliding mode and linearizing aero-

turbine controller were implemented using the FAST flexible

aeroturbine simulator. Simulations have been conducted for

different wind speed profiles. The controller performance is

summarized in TABLE I for different mean wind speeds.

Despite the aeroturbine parameters variations, the power cap-

ture efficiency remain very good for all wind speed profiles,

that is about 70 %. The low speed shaft and generator torque

remain also acceptable for all the considered scenarios.

Fig. 5 compare the performance obtained using the two

controllers in presence of model parameters uncertainties.

For the linearizing controller, this causes the deviation of

the rotor speed from its optimal reference (Fig. 5(a)). The

deviation induce an important power capture loss as shown

in Fig. 5(c). One may observe in Fig. 5(b) that the control

torque used by the sliding mode controller is more important

than that developed by the input output linearizing one.

However, it still remains below the upper bound of 162 kN.m.

TABLE II summarize the performance of the two controllers.

One can see that an increase of 5 % in power capture is

achieved thanks to the robustness of the proposed controller.

TABLE II and Fig. 5(d) shows that the torque in the low

speed shaft remain close for the two controllers.

VII. CONCLUSION

A cascaded nonlinear sliding mode control system is

proposed in this work for power production optimization of

a variable speed wind turbine equipped with a Doubly Fed

Induction Generator.

The controllers guarantees robustness against parameters

variations. In presence of rotor and stator resistances uncer-

tainties, the sliding mode DFIG controller achieves a good

tracking of rotor reference flux and torque. Similarly, the

aeroturbine sliding mode controller ensures a robust tracking

of the optimal wind turbine rotor speed in order to maximize

the extracted energy from the wind, below the rated power

area. This controller has shown better performance than

classical approaches in presence of model uncertainties.

The validation using an aeroelastic wind turbine simulator

justified the efficiency of the proposed approach.

To implement the proposed controllers, discrete time version

will be considered in future works. The study of the global

stability of the controlled system and the use of higher-order

sliding mode controllers are also interesting prospects.
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