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Abstract—In this paper, a review about gain scheduling (GS) is
presented, with a special focus on the classical GS approach and
the linear parameter varying (LPV) approach. The main defini-
tions are given. A brief overview of stability and performance
is stated. More recent results are gathered. Finally, a simulation
example on a rotational link is presented, comparing two different
techniques of gain scheduling, showing that gain-scheduled LPV
state feedback actually achieves better performance over a much
wide operating range than classical gain scheduling.

Index Terms—Gain scheduling (GS) control, Linear
parameter-varying systems (LPV), Linearization

I. INTRODUCTION

Last decades have seen the rapid development of the sys-
tematic design of controllers that can guarantee both stability
and performance for nonlinear systems [1]. The research
emphasis has moved from focusing solely on optimality to also
taking into account robustness in the presence of parameter
variations. Gain-scheduling can be applied if these parameters
are available online for measurement. The key idea behind
gain-scheduling is to decompose the nonlinear problem into
linear or nonlinear sub-problems, the main difference lies in
the implementation [2]. It is widely known that this controller
design approach provides better stability and performance re-
sults for slowly varying parameters [3]. The Linear parameter
varying approach firstly introduced by Shamma is systematic
way of performing gain-scheduled controllers [4]. The passed
twenty years have seen increasingly rapid advances on gain
scheduling in both practical and theoretical results, we cite
for example the work presented in [5] and [6]. As a result it
becomes widely used in many engineering applications such as
missile autopilte [7],autonomous vehicules [8], Autonomous
Aerial Vehicles [9] and wind turbines [10], [11]. Many ap-
proaches to gain scheduling can be found in the literature
we can classify them in many different ways, according to
the existed main methods: classical gain scheduling, Linear
Parameter Varying (LPV) gain scheduling, Linear Fractional
Transformation (LFT) based gain scheduling, Fuzzy gain
scheduling, Model predictive control (MPC) gain scheduling,
and other new methods. According to the nature of the
signal, it is possible to find continuous or discrete, hybrid
or switched gain scheduling controllers. It depends also on
the decomposition of the nonlinear design into linear or affine
nonlinear sub-problems [12].

In this work, we attempt to briefly review the main theoret-
ical results on gain scheduling (GS) with a special focus on
classical GS and LPV based GS.

This paper is devided into six sections. Section II gives
the main definitions. Section III presents the classical gain
scheduling. Section IV is devoted to LPV gain scheduling. In
section V a simulation example on a simple rotational link
is made using classical and LPV approach. Finally, the last
section contain conclusions and future work.

Throughout this paper, * will refer to Matrix entries that
can be inferred by symmetry.

II. PRELIMINARIES

In this section main definitions are given
Definition 1: Scheduling Variable A variable that repre-

sents the dynamic changes of the plant and is a measurable
signal.

Definition 2: Scheduled Variable A variable that changes as
a function of a scheduling variable, as a result of that changing
the controller will change according to the operating point.

Definition 3: Exogenous parameters are external variables.
The system is in that case non stationary.

Definition 4: Endogenous parameters are function of the
state variables,ρ(x(t), t), In this case, the LPV system is
called a quasi-LPV system. This is the case when approaching
nonlinear systems [13].

III. CLASSICAL GAIN SCHEDULING

In the classical gain scheduling approach [2], [12] also
called ”linearization based gain scheduling”. The first step is
the selection of scheduling variable, then the nonlinear plant
is linearized about a family of operating points or equilibrium
points for fixed values of the scheduling variable. Noting that
this assumption is then ignored and the scheduling variable is
treated as time varying scheduling, that is measured and used
to adjust the controller gains online.

consider the nonlinear plant described by [14]{
ẋ(t) = f(x(t), u(t))

y(t) = h(x(t)), t ≥ 0
(1)

where x(t),u(t) and y(t) are the state vector, the input vector
and the measured output vector respectively. It is assumed that
there exists a family of equilibrium points (xeq, ueq) such that
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0 = f(xeq(ρ), ueq(ρ)) (2)

where ρ is the scheduling variable and is assumed to be
bounded and measured during the control operation. For a
fixed value of ρ, the following linearization family is obtained{

˙̃x(t) = A(ρ)x̃(t) +B(ρ)ũ(t)

ỹ(t) = C(ρ)x̃(t)
(3)

where

A(ρ) =
∂f(xeq(ρ), ueq(ρ))

∂x
(4)

B(ρ) =
∂f(xeq(ρ), ueq(ρ))

∂u
(5)

C(ρ) =
∂h(xeq(ρ), ueq(ρ))

∂x
(6)

x̃(t) = x(t)− xeq(ρ) (7)

ũ(t) = u(t)− ueq(ρ) (8)

ỹ(t) = x(t)− h(xeq(ρ)) (9)

Then any linear control design method can be applied resulting
the collection of controllers denoted by{

˙̃v(t) = A(ρ)v(t) +B(ρ)ỹ(t)

ũ(t) = C(ρ)v(t) +D(ρ)ỹ(t)
(10)

A. The Problem Of Classical Gain Scheduling

When endogenous signals such as state variables or system
output are used as scheduling variables, hidden coupling terms
(HCTs) appear in the linearized gain scheduling controller,
indicating a connection between the plant and the controller
caused by the fact that both the plant and the controller are
scheduled by the same scheduling signal. [12].

Removing the HCTs from the design results in a lack
of compatibility between the set of LTI controller dynamics
utilized for design and the linearized dynamics of a nonlinear
gain-scheduled controller. When the gain-scheduled controller
is applied to the original nonlinear system, this mismatch will
obviously result in substantial performance deterioration and
potentially closed-loop system instability. Many techniques are
used to overcome the problem of HTCs such as the exact
cancellation of the HTCs [12]. Another technique consists of
employing a velocity-based algorithm which is a specific gain-
scheduled controller implementation to avoid this problem
proposed in [2], there are other solutions that can fail in
some cases or leads to more complex controller stucture [15].
A simpler and more general design based on eigenstructure
assignment proposed in [16], [17].

IV. LPV BASED GAIN SCHEDULING

A. Linear Parametr Varying Systems (LPV) Representation

Given an LPV plant denoted by{
ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t)

y(t) = C(ρ(t))x(t) +D(ρ(t))u(t)
(11)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rp is the input
vector, y(t) ∈ Rq is the output vector. Scheduling variables ρ
is a time-varying vector such that ρ(t) ∈ P ⊂ Rnρ where P is
a given compact set, and the matrices A(.),B(.),C(.) and D(.)
are parameter dependent matrices of appropriate dimensions
of the scheduling signal vector ρ. One can also consider LPV
systems with constraints on the rate of change ρ̇(t) in this case
we define

|ρ̇i| < vi , i = 1, ...,nρ (12)

And we define the set V such that

V = {v ∈ Rnρ |vi| < vi , i = 1, ...,nρ} (13)

B. Stability of LPV Systems

In this section we give an overview on the stability of
LTI systems, then we derive the notions of stability for LPV
systems, we have to mention that the LPV approach is very
similar to robust analysis as we can see in figure 1

1) Stability Of LTI Systems: consider the following au-
tonomous LTI system{

ẋ(t) = Ax(t), t ≥ 0

x(0) = x0
(14)

Theorem 1: Lyapunov stability for LTI systems The LTI
system (14) is stable if and only if, there exits a symmetric
matrix P > 0 such that

ATP + PA < 0. (15)

2) Stability Of LPV Systems Using Fixed Lyapunov func-
tion: {

ẋ(t) = A(ρ(t))x(t), t ≥ 0

x(0) = x0
(16)

Theorem 2: The LPV system (16) is stable over P if, there
exits a symmetric matrix P > 0 such that

A(ρ)TP + PA(ρ) < 0.∀ρ ∈ P (17)

3) Stability Of LPV Systems Using Parameter dependent
Lyapunov function:

Theorem 3: The LPV system (16) is stable over (P × V)
if, there exits a symmetric,continuously differentiable matrix
P (ρ) such that

P (ρ) > 0∀ρ ∈ P (18)

and

A(ρ)TP (ρ) + P (ρ)A(ρ) +

nρ∑
i=1

ρ̇i
∂P

∂ρi
< 0.∀(ρ, ρ̇) ∈ (P × V)

(19)
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Fig. 1. Gain scheduling dependencies [18]

C. Performance of LPV Systems

Definition 5: (Induced L2 norm) [10] The induced L2 norm
for the LPV system (11) with zero initial conditions is defined
as:

∥Tyu∥i,2 = sup
ρ(t)∈Ω

sup
u(t)̸=0∈L2

∥y∥2
∥u∥2

(20)

Where Tyu is the transfer between the output and the input
that provides the forced response to an input signal u(t) ∈ L2

for zero initial conditions. a bound γ > 0 on ∥Tyu∥i,2 means
that ∫ ∞

0

y(χ)T y(χ)dχ < γ2
∫ ∞

0

u(χ)Tu(χ)dχ (21)

Notice that for a fixed parameter, the L2-norm equals the ∞-
norm.

∥Tyu(iω)∥∞ = sup
ω
σ̄ (Tyu(iω)) (22)

When ∥Tyu∥i,2 < γ holds and the LPV system (11) is
exponentially stable, and γ is the performance level. The
Bounded Real Lemma is extended in the following way
to provide adequate criteria for evaluating performance by
solving an optimisation problem with linear matrix inequality
(LMI) constraints.

Theorem 4: Given the LPV system (11) with (ψ, ψ̇) ∈ Ψ×V
There exists a positive definite differentiable symmetric matrix
function X(ψ) and Ẋ(ψ) +AT (ψ)X(ψ) +X(ψ)A(ψ) ∗ ∗

BT (ψ)X(ψ) −γInu
∗

C(ψ) D(ψ) −γIny

 < 0

(23)
for all (ψ, ψ̇) ∈ Ψ× V . Then,

1) A(ψ) is parametrically-dependent quadratically (PDQ)
stable over Ψ,

2) There exists a scalar φ with 0 ≤ φ < γ such that
∥Tyu∥i,2 ≤ φ.

Where ψ refers to the scheduling variable ρ(t).

D. Gain Schedued control Of an LPV System

The main step came after stability results and analysis in
the LPV based frameworke for nonlinear systems is control
design, which is directly derived form the theory of robust
control. The main difference between them is that the schedul-
ing variable of LPV system is available online to adjust the
control law which leads to less conservative solutions, that is
not the case for the uncertainties or unknown parameters in
robust control theory that may be more conservative.

1) Gain-Schedued state feedback [5]: Gain-Schedued State
Feedback controller is the simplest control design law,it has
the following form

u(t) = K(ρ(t))x(t) (24)

This controller’s design is easy but needs all the states of
the system to be available for measurement in order to be
implemented, which is not always the case in many practical
situations. [19].

2) Gain-Schedued static output feedback: The gain
scheduling static output feedback controller is another basic
gain scheduled control law, which is in the form

u(t) = K(ρ(t))y(t) (25)

For more details the reader is referred to some new papers
[20], [21]

3) Gain-Schedued observer-based feedback: in case where
the state vector is not fully available for state feedback
controller and the static output feedback cannot provide the
design requirements one can use gain-scheduled observer-
based control laws. The form of this controller is as follows{
˙̂x(t) = A(ρ(t))x̂(t) +B(ρ(t))u(t)− L(ρ(t))(y(t)− ŷ(t))

u(t) = C(ρ(t))x̂(t)
(26)

x̂(t),ŷ(t) are the estimated state and estimated output respec-
tively, L(ρ(t))is the observer gain matrix. The gain scheduled
controller is constructed using

u(t) = K(ρ(t))x̂(t) (27)

new results are presented in the work of Alam et al [22] and
Sato [23]. There are also some details in [18] and references
therein.

4) Gain-Schedued Dynamic Output Feedback [6]: The
gain scheduled dynamic output feedback (DOF) leads to a
less conservative controller, in contrast to other controllers,its
structure is quite similar to observer based controllers but in
this this case the state is not to be estimated, it takes the
following form{

ẋ(t) = Ac(ρ(t))xc(t) +Bc(ρ(t))y(t)

u(t) = Cc(ρ(t))xc(t) +Dc(ρ(t))y(t)
(28)

An increasing interest is given to GSDOF in many appli-
cations, in wind turbine control [11], in steering control
for autonomous vehicles [8] and applied to vehicle stability
control [24]. Theoretical results could be found in [25] and
[26].

E. Reducing to finite number of LMIs

The fact that the solution involves solving an infinite number
of linear matrix inequalities (LMIs) owing to the parameter
space, is a significant difficulty in the formulation of LPV
control problem. The problem has been reduced to a fixed
number of LMIs via a variety of strategies: The polytopic
approache [7], gridding-based approache [5] and LFT based
approach [27]



ρ

ρ

ρ ρ

ω1 ω2

ω3 ω4

Fig. 2. Polytope of admissible parameters range

[a] [b]

Fig. 3. a. Lower LFR b. Upper LFR reprsentation

Polytopic LPV synthesis: one can use this approach where
the LPV system can be represented by state space matrices
A(ρ(t)), B(ρ(t)), C(ρ(t)) and D(ρ(t)) where the scheduling
parameter ranges within a fixed polytope as shown in figure
2 (i.e it can be expressed as convex hull),and the matrices
A(.), B(.), C(.) and D(.) depend affinly on ρ(t) such that:

ρ ∈ Co {ω1, . . . , ωm} (29)

and (
A(ρ) B(ρ)
C(ρ) D(ρ)

)
=

m∑
j=1

αj(ρ)

(
Aj Bj

Cj Dj

)
(30)

αj ⩾ 0, and

m∑
j=1

αj(ρ) = 1. (31)

Gridding-based LPV synthesis: This approach can be used
in the case where there is no affine parameter dependency
(i.e. nonlinear) of the model. The gridding process consists
of defining a subset of gridded parameters denoted Pg ∈ P ,
the controller is then synthesized by solving Linear Matrix
Inequalities (LMIs) ∀ρ ∈ Pg , and checking the LMI con-
straints in the selected grid density. Careful consideration must
be given while choosing the grid density, a coarse grid may
not correctly capture the parameter variation. On the other
hand, solving LMIs for a dense grid can result in computing
expenses and numerical problems. [28].

LFT synthesis: the LPV systems can be represented in
the LFT-form, describes the interconnection between two
subsystems, defined as a lower or upper linear fractional
representation (LFR) between a nominal LTI model and a
parameter-varying block as shown in figure 3.

V. APPLICATION TO A ROTATIONAL LINK

To conclude this work, we present a simulation example of
classical GS and LPV gain-scheduled state feedback, applied

to a simplified rotational link. This example is taken from [29].
Given the dynamics of the rotational link{

ẋ1(t) = x2(t)

ẋ2(t) = mgLsin(x1(t))/J − cx2(t)|x2(t)|+ u(t)
(32)

Where x1 = θ and x2 = θ̇. Let w(t) be the reference tracking
for θ(t).

1) Classical gain scheduling design: In the classical gain
scheduled controller, the nonlinear model of the plant is lin-
earized about a fixed operating point, designing a proportional
derivative feedback pole placement, then the gain scheduled
control law is obtained when the scheduling variable is treated
as time varying. Linearizing the system around an equilibrium
leads to

˙̃x(t) = A(ρ)x̃(t) +B(ρ)ũ(t) (33)

xeq(ρ) =

(
ρ
0

)
(34)

ueq(ρ) = −mgLsin(ρ)/J (35)

A(ρ) =

(
0 1

mgLcos(ρ)/J 0

)
, B(ρ) =

(
0
1

)
(36)

putting all parameters equal to one and for a fixed ρ, designing
a proportional derivative feedback placing the closed loop
poles at −1± j

ũ(t) = −
(
cos(ρ) + 2 2

)
x̃(t) + 2w̃(t) (37)

and leads to zero steady-state error to step commands, where
w̃(t) = w(t)−ρ. The final gain scheduled control law is given
by

u(t) = ueq(ρ)−
(
cos(ρ) + 2 2

)
(x(t)− xeq(ρ)) + 2(w(t)− ρ)

(38)
2) LPV gain-scheduled state feedback design: Now design-

ing an LPV gain-scheduled state feedback controller using the
approach proposed by Wu [5] on the same previous example.
In the LPV GS controller a quasi-LPV representation is ob-
tained by linearizing the nonlinear model of the system around
a moving operating point. Available convex optimization tools
make the control synthesis problem solvable, and allow us
to design a gain-scheduled state-feedback controller using a
gridding-based technique.

The LPV representation is given by{
ẋ(t) = A(ρ)x(t) +B(ρ)u(t)

y(t) = C(ρ)x(t)
(39)

where C(ρ) =
(
1 0

)
, A(ρ),B(ρ) are the same in ( 36).

x1 ∈ [0, 180], |x2| < 10 rad
s . The Lyapunov matrix is selected

arbitrary to be
P (ρ) = P1 + P2x2 (40)

Weighting filters for mixed sensitivity S/KS shown in figure
4 are chosen as

WS =
1

s
, WK = 0.05 (41)
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The augmented LPV plant is in the following form ẋ
z1
z2

 =

 A(ρ) Bw(ρ) Bu(ρ)
C1(ρ) 0 0
C2(ρ) 0 I

 x
w
u

 (42)

Then if there exists
P > 0 (43)

And  Ξ PCT
1

1
γBw

C1P −I 0
1
γB

T
w 0 −I

 < 0 (44)

With

Ξ = P (A−BuC2)
T
+ (A−BuC2)P −BuB

T
u −

nρ∑
i=1

∂P

∂pi
ρ̇

(45)
Then the GS state feedback control law is expressed as

u(t) = F (ρ)x(t) (46)

Where
F (ρ) = −BT

u P
−1(ρ)− C2 (47)

The LMIs are implemented and solved in MATLAB using the
software packages Yalmip [30] and SeDuMi [31].

3) Discussion of results: Simulation results for tracking a
square reference for the rotational link are illustrated in figure
5- 7.

We can see that both controllers perform well in all the
operating ranges, It is interresting to mention that the GS-
LPV State-feedback gives better results than the classical GS
in terms of time response and overshoot as we can see in figure
5.

VI. CONCLUSIONS AND FUTURE WORK

Throughout this paper, a brief review of gain scheduling
design control is given. Its importance in many engineering
application is explained. The gain scheduling is presented
using the classical and LPV approach. Recent theoretical
results related to it are also given briefly. A comparative study
between classical gain scheduling and LPV gain-scheduled
state feedback is developed. Simulation results illustrates that
the GS-LPV state feedback is able to stabilize the system
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with higher performace than the classical GS. Our future
work consists on designing gain scheduled controllers for more
complex systems, with real world experiments.
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